
Graph Stream Algorithms: A Survey

 Andrew McGregor
University of Massachusetts Amherst

Graph Stream Model

Graph Stream Model

• Input: Sequence of edges (e1, e2 ...) defines n-node graph G.

Graph Stream Model

• Input: Sequence of edges (e1, e2 ...) defines n-node graph G.

Graph Stream Model

• Input: Sequence of edges (e1, e2 ...) defines n-node graph G.

Graph Stream Model

• Input: Sequence of edges (e1, e2 ...) defines n-node graph G.

• Goal: Compute properties of G without storing entire graph.

Graph Stream Model

• Input: Sequence of edges (e1, e2 ...) defines n-node graph G.

• Goal: Compute properties of G without storing entire graph.

• Computational constraints:

• i) Limited working memory, e.g., O(n) rather than O(m)

Graph Stream Model

• Input: Sequence of edges (e1, e2 ...) defines n-node graph G.

• Goal: Compute properties of G without storing entire graph.

• Computational constraints:

• i) Limited working memory, e.g., O(n) rather than O(m)

• ii) Access data sequentially

Graph Stream Model

• Input: Sequence of edges (e1, e2 ...) defines n-node graph G.

• Goal: Compute properties of G without storing entire graph.

• Computational constraints:

• i) Limited working memory, e.g., O(n) rather than O(m)

• ii) Access data sequentially

• iii) Process each element quickly

Graph Stream Model

• Input: Sequence of edges (e1, e2 ...) defines n-node graph G.

• Goal: Compute properties of G without storing entire graph.

• Computational constraints:

• i) Limited working memory, e.g., O(n) rather than O(m)

• ii) Access data sequentially

• iii) Process each element quickly

Computational⌄

Motivation

Motivation

• Traditional stream applications: Network monitoring, reading
large data sets from disk, aggregation of sensor readings...

Motivation

• Traditional stream applications: Network monitoring, reading
large data sets from disk, aggregation of sensor readings...

• Interesting theoretical questions: How can we summarize graphs?
Is there a notion of dimensionality reduction? What types of
sampling is possible? Connections to compressed sensing,
communication complexity, approximation, embeddings, ...

Motivation

• Traditional stream applications: Network monitoring, reading
large data sets from disk, aggregation of sensor readings...

• Interesting theoretical questions: How can we summarize graphs?
Is there a notion of dimensionality reduction? What types of
sampling is possible? Connections to compressed sensing,
communication complexity, approximation, embeddings, ...

• Techniques have wider applications: E.g., distributed settings,

Motivation

• Traditional stream applications: Network monitoring, reading
large data sets from disk, aggregation of sensor readings...

• Interesting theoretical questions: How can we summarize graphs?
Is there a notion of dimensionality reduction? What types of
sampling is possible? Connections to compressed sensing,
communication complexity, approximation, embeddings, ...

• Techniques have wider applications: E.g., distributed settings,

Data Data Data Data

Motivation

• Traditional stream applications: Network monitoring, reading
large data sets from disk, aggregation of sensor readings...

• Interesting theoretical questions: How can we summarize graphs?
Is there a notion of dimensionality reduction? What types of
sampling is possible? Connections to compressed sensing,
communication complexity, approximation, embeddings, ...

• Techniques have wider applications: E.g., distributed settings,

Data Data Data Data

Each machine runs stream
algorithm locally and sends state

of their algorithm.

Outline

• This Talk:

• Algorithms: Summarizing and computing on graph streams

• Extensions: Sliding windows, extra passes, annotations etc.

• Future Directions: Directed edges, ordering, stochastic graphs

Outline

• This Talk:

• Algorithms: Summarizing and computing on graph streams

• Extensions: Sliding windows, extra passes, annotations etc.

• Future Directions: Directed edges, ordering, stochastic graphs

• Accompanying Survey:

• Includes all references and further details.

• Feedback welcome...

Outline

G

r

a

p

h

S

t

r

e

a

m

A

l

g

o

r

i

t

h

m

s

:

A

S

u

r

v

e

y

Andrew McGregor⇤
University of Massachusetts

mcgregor@cs.umass.eduABSTRACTOver the last decade, there has been considerable in-

terest in designing algorithms for processing massive

graphs in the data stream model. The original moti-

vation was two-fold: a) in many applications, the dy-

namic graphs that arise are too large to be stored in the

main memory of a single machine and b) considering

graph problems yields new insights into the complexity

of stream computation. However, the techniques devel-

oped in this area are now finding applications in other

areas including data structures for dynamic graphs, ap-

proximation algorithms, and distributed and parallel com-

putation. We survey the state-of-the-art results; iden-

tify general techniques; and highlight some simple al-

gorithms that illustrate basic ideas.
1. INTRODUCTIONMassive graphs arise in any application where there

is data about both basic entities and the relationships

between these entities, e.g., web-pages and hyperlinks;

neurons and synapses; papers and citations; IP addresses

and network flows; people and their friendships. Graphs

have also become the de facto standard for representing

many types of highly-structured data. However, analyz-

ing these graphs via classical algorithms can be chal-

lenging given the sheer size of the graphs. For exam-

ple, both the web graph and models of the human brain

would use around
1

0

1

0 nodes and IPv6 supports
2

1

2

8

possible addresses.One approach to handling such graphs is to process

them in the data stream model where the input is de-

fined by a stream of data. For example, the stream could

consist of the edges of the graph. Algorithms in this

model must process the input stream in the order it ar-

rives while using only a limited amount memory. These

constraints capture various challenges that arise when

processing massive data sets, e.g., monitoring network

traffic in real time or ensuring I/O efficiency when pro-

cessing data that does not fit in main memory. Related

⇤Supported in part by NSF awards CCF-0953754 and CCF-

1320719 and a Google Research Award.

questions that arise include how to trade-off size and ac-

curacy when constructing data summaries and how to

quickly update these summaries. Techniques that have

been developed to the reduce the space use have also

been useful in reducing communication in distributed

systems. The model also has deep connections with a

variety of areas in theoretical computer science includ-

ing communication complexity, metric embeddings, com-

pressed sensing, and approximation algorithms.

The data stream model has become increasingly pop-

ular over the last twenty years although the focus of

much of the early work was on processing numerical

data such as estimating quantiles, heavy hitters, or the

number of distinct elements in the stream. The earli-

est work to explicitly consider graph problems was the

influential by paper by Henzinger et al. [36] which con-

sidered problems related to following paths in directed

graphs and connectivity. Most of the work on graph

streams has occurred in the last decade and focuses on

the semi-streaming model [27, 52]. In this model the

data stream algorithm is permittedO
(n

p

o

l

y

l

o

g n
) space

where n is the number of nodes in the graph. This is

because most problems are provably intractable if the

available space is sub-linear in n, whereas many prob-

lems become feasible once there is memory roughly pro-

portional to the number of nodes in the graph.

In this document we will survey the results known

for processing graph streams. In doing so there are nu-

merous goals including identifying the state-of-the-art

results for a variety of popular problems and identify-

ing general algorithmic techniques. It will also be nat-

ural to discuss some important summary data structures

for graphs, such as spanners and sparsifiers. Through-

out, we will present various simple algorithms, some of

which may not be optimal, that illustrate basic ideas and

would be suitable for teaching in an undergraduate or

graduate classroom setting.Notation. Throughout this document we will use n and

m to denote the number of nodes and edges in the graph

under consideration. For any natural number k, we use

[k
] to denote the set {

1,
2, . . . , k}. We write a

= b ± c

http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

1.	
Algorithms

2. 	
Extensions

3. 	
Directions

1.	
Algorithms

2. 	
Extensions

3. 	
Directions

Sparsifiers & Cuts

Sparsifiers & Cuts

• Sparsifiers: A subgraph H is a (1+ε) sparsifier for G if the
total weight of any cut is preserved up to a factor 1+ε.

Original Graph G

Sparsifiers & Cuts

• Sparsifiers: A subgraph H is a (1+ε) sparsifier for G if the
total weight of any cut is preserved up to a factor 1+ε.

Original Graph G Sparsifier Graph H

D
ia

gr
am

 c
ou

rt
es

y
of

 N
ic

k
H

ar
ve

y

Sparsifiers & Cuts

• Sparsifiers: A subgraph H is a (1+ε) sparsifier for G if the
total weight of any cut is preserved up to a factor 1+ε.

• Thm: For any graph G there exists a (1+ε) sparsifier
with only O(ε-2 n) edges. Can be constructed efficiently.

Original Graph G Sparsifier Graph H

D
ia

gr
am

 c
ou

rt
es

y
of

 N
ic

k
H

ar
ve

y

Sparsifiers & Cuts

• Sparsifiers: A subgraph H is a (1+ε) sparsifier for G if the
total weight of any cut is preserved up to a factor 1+ε.

• Thm: For any graph G there exists a (1+ε) sparsifier
with only O(ε-2 n) edges. Can be constructed efficiently.

• Thm: Can construct a (1+ε)-sparsifier of a graph stream
using O(ε-2 n polylog n) bits of space.

Original Graph G Sparsifier Graph H

D
ia

gr
am

 c
ou

rt
es

y
of

 N
ic

k
H

ar
ve

y

Sparsifier Algorithm

Sparsifier Algorithm

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E2E1

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E2E1

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪E2

E2E1

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪E2

E2E1

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪E2

E2E1

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪E2

E3E2E1

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪E2

E3E2E1

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪E2

E3E2E1 E4

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪E2

E3E2E1 E4

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E3∪E4E1∪E2

E3E2E1 E4

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E3∪E4E1∪E2

E3E2E1 E4

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E3∪E4E1∪E2

E3E2E1 E4

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4 E5

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4 E5

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4 E6E5

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4 E6E5

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪E6

E6E5

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪E6

E6E5

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪E6

E6E5

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪E6

E7E6E5

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪E6

E7E6E5

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E7∪E8E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E7∪E8E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E7∪E8E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪..∪E8

E7∪E8E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪..∪E8

E7∪E8E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪..∪E8

E7∪E8E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm
E1∪..∪E8

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪..∪E8

E7∪E8E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm
E1∪..∪E8

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪..∪E8

E7∪E8E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm
E1∪..∪E8

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪..∪E8

E7∪E8E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

Sparsifier Algorithm
E1∪..∪E8

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪..∪E8

E7∪E8E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

• Analysis: Let d=O(log n) be depth of the tree. Error of a final cut
estimate is (1+ε)d and we only store d sparsifiers simultaneously.

Sparsifier Algorithm
E1∪..∪E8

E1∪..∪E4

E3∪E4E1∪E2

E3E2E1 E4

E5∪..∪E8

E7∪E8E5∪E6

E7E6E5 E8

• Algorithm: Recursively re-sparsify using any “offline” algorithm.

• Analysis: Let d=O(log n) be depth of the tree. Error of a final cut
estimate is (1+ε)d and we only store d sparsifiers simultaneously.

• Results extend to constructing spectral sparsifiers.

Spanners & Distances

Spanners & Distances

• Spanner: A subgraph H is a k-spanner for G if all graph
distances are preserved up to a factor k.

1 2 3

4 5 6

7 8 9

Original Graph G

Spanners & Distances

• Spanner: A subgraph H is a k-spanner for G if all graph
distances are preserved up to a factor k.

1 2 3

4 5 6

7 8 9

Original Graph G

1 2 3

4 5 6

7 8 9

Spanner Graph H

Spanners & Distances

• Spanner: A subgraph H is a k-spanner for G if all graph
distances are preserved up to a factor k.

• Thm: There is a O(n1+1/t) space stream algorithm that
constructs a (2t-1)-spanner.

1 2 3

4 5 6

7 8 9

Original Graph G

1 2 3

4 5 6

7 8 9

Spanner Graph H

Spanners Algorithm

Spanners Algorithm
1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

• Lemma: All distances preserved up to a factor 2t-1
because an edge (u,v) was only ignored if there was
already a path of length at most 2t-1 between u and v.

1 2 3

4 5 6

7 8 9

Spanners Algorithm

• Algorithm: Store next edge (u,v) unless it completes a
cycle of length 2t or less.

• Lemma: All distances preserved up to a factor 2t-1
because an edge (u,v) was only ignored if there was
already a path of length at most 2t-1 between u and v.

• Lemma: At most (n1+1/t) edges stored since shortest
cycle among stored edges has length at least 2t+1.

1 2 3

4 5 6

7 8 9

Other Algorithms

Other Algorithms
• Matchings: See Sudipto’s talk...

‣ Goal: Find large set of disjoint edges.

‣ Results: Õ(n)-space algorithms 2-approx. (unweighted) and
4-approx. (weighted). Can do better if edges are grouped
together by end-point or arrive in random order.

‣ Extensions: O(1) approx. for various sub-modular problems.

Other Algorithms
• Matchings: See Sudipto’s talk...

‣ Goal: Find large set of disjoint edges.

‣ Results: Õ(n)-space algorithms 2-approx. (unweighted) and
4-approx. (weighted). Can do better if edges are grouped
together by end-point or arrive in random order.

‣ Extensions: O(1) approx. for various sub-modular problems.

• Counting Triangles: Estimate the number of triangles (or small
cycle or clique etc.). See Srikanta’s talk...

Other Algorithms
• Matchings: See Sudipto’s talk...

‣ Goal: Find large set of disjoint edges.

‣ Results: Õ(n)-space algorithms 2-approx. (unweighted) and
4-approx. (weighted). Can do better if edges are grouped
together by end-point or arrive in random order.

‣ Extensions: O(1) approx. for various sub-modular problems.

• Counting Triangles: Estimate the number of triangles (or small
cycle or clique etc.). See Srikanta’s talk...

• Random Walks: Simulate length t random walks in √t passes.

Other Algorithms
• Matchings: See Sudipto’s talk...

‣ Goal: Find large set of disjoint edges.

‣ Results: Õ(n)-space algorithms 2-approx. (unweighted) and
4-approx. (weighted). Can do better if edges are grouped
together by end-point or arrive in random order.

‣ Extensions: O(1) approx. for various sub-modular problems.

• Counting Triangles: Estimate the number of triangles (or small
cycle or clique etc.). See Srikanta’s talk...

• Random Walks: Simulate length t random walks in √t passes.

• Other: Minimum spanning trees, bipartiteness, finding dense
components, correlation clustering, independent sets, etc.

1.	
Algorithms

2. 	
Extensions

3. 	
Directions

1.	
Algorithms

2. 	
Extensions

3. 	
Directions

Extensions of Model

Extensions of Model
• Sliding Window: Infinite stream but only consider graph defined

by recent w edges. Can solve most aforementioned problems.

Extensions of Model
• Sliding Window: Infinite stream but only consider graph defined

by recent w edges. Can solve most aforementioned problems.

• Multiple Passes: What’s possible with a small number of stream
passes? E.g., can find 1+ε approx. matching in O(ε-1) passes.

Extensions of Model
• Sliding Window: Infinite stream but only consider graph defined

by recent w edges. Can solve most aforementioned problems.

• Multiple Passes: What’s possible with a small number of stream
passes? E.g., can find 1+ε approx. matching in O(ε-1) passes.

• Annotated Streams: Suppose a third party “annotates” the
stream to assist with the computation. Can we reduce
required memory while still verifying correctness.

Extensions of Model
• Sliding Window: Infinite stream but only consider graph defined

by recent w edges. Can solve most aforementioned problems.

• Multiple Passes: What’s possible with a small number of stream
passes? E.g., can find 1+ε approx. matching in O(ε-1) passes.

• Annotated Streams: Suppose a third party “annotates” the
stream to assist with the computation. Can we reduce
required memory while still verifying correctness.

STREAM

Extensions of Model
• Sliding Window: Infinite stream but only consider graph defined

by recent w edges. Can solve most aforementioned problems.

• Multiple Passes: What’s possible with a small number of stream
passes? E.g., can find 1+ε approx. matching in O(ε-1) passes.

• Annotated Streams: Suppose a third party “annotates” the
stream to assist with the computation. Can we reduce
required memory while still verifying correctness.

STREAM

ADVICE
STREAM

Dynamic Graphs

Dynamic Graphs
• Dynamic Graph Streams: Suppose the stream consists of edges

both being added and removed from the underlying graph.

• Can we maintain a uniform edge sample in small space?

‣ Challenge: The sampled edge we have remembered so far
may be deleted at the next step.

‣ Result: Can maintain uniform sample in O(polylog n) space
via a technique called “l0 sampling”.

Dynamic Graphs
• Dynamic Graph Streams: Suppose the stream consists of edges

both being added and removed from the underlying graph.

• Can we maintain a uniform edge sample in small space?

‣ Challenge: The sampled edge we have remembered so far
may be deleted at the next step.

‣ Result: Can maintain uniform sample in O(polylog n) space
via a technique called “l0 sampling”.

• More powerful sampling techniques:

‣ In O(n polylog n) space, can construct a data structure that
returns a random edge across any queried cut.

‣ In O(n polylog n) space, can sample edges where (u,v) is
sampled w/p inversely proportional to size of min u-v cut.

Distributed Graph Data

...

Distributed Graph Data

...

• Setting: The rows of an adjacency matrix are partitioned
between different machines. Equivalently, consider n players
each of whom has an “address book” listing their friends.

Distributed Graph Data

...

• Setting: The rows of an adjacency matrix are partitioned
between different machines. Equivalently, consider n players
each of whom has an “address book” listing their friends.

• Goal: Each player sends a “short” message to a third party
who then determines if underlying graph is connected.

Distributed Graph Data

• Appears that some messages need to be Ω(n) bits: If there’s a
bridge (u,v) in the graph, one of the friends needs to mention
this friendship but neither friend knows it’s a bridge.

Distributed Graph Data

• Appears that some messages need to be Ω(n) bits: If there’s a
bridge (u,v) in the graph, one of the friends needs to mention
this friendship but neither friend knows it’s a bridge.

• Thm: O(polylog n) bit messages suffice!

Distributed Graph Data

• Appears that some messages need to be Ω(n) bits: If there’s a
bridge (u,v) in the graph, one of the friends needs to mention
this friendship but neither friend knows it’s a bridge.

• Thm: O(polylog n) bit messages suffice!

‣ With a small increase of size, can allow third-party to
estimate all cut sizes and spectral properties of the graph!

‣ Protocol is based on “cut sampling” primitive where third
party can deduce some edge across any cut w/p 1-1/poly(n)

Distributed Graph Data

Basic Idea: Cut Sampling

First: Encode neighborhoods of i as vector ai.
Basic Idea: Cut Sampling

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

First: Encode neighborhoods of i as vector ai.
Basic Idea: Cut Sampling

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

First: Encode neighborhoods of i as vector ai.
Basic Idea: Cut Sampling

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

First: Encode neighborhoods of i as vector ai.
Basic Idea: Cut Sampling

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

First: Encode neighborhoods of i as vector ai.

Lemma: For any subset of nodes S⊂V,

Basic Idea: Cut Sampling

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

support (

X

i2S

ai) = E (S ,V \ S)

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

First: Encode neighborhoods of i as vector ai.

Lemma: For any subset of nodes S⊂V,

Second: Send Maj where M is random projection
to ℝpolylog N such that for any a, we can infer non-
zero entry of a from Ma.
 [Jowhari, Saglam, Tardos 2011]

Basic Idea: Cut Sampling

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

support (

X

i2S

ai) = E (S ,V \ S)

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

First: Encode neighborhoods of i as vector ai.

Lemma: For any subset of nodes S⊂V,

Second: Send Maj where M is random projection
to ℝpolylog N such that for any a, we can infer non-
zero entry of a from Ma.
 [Jowhari, Saglam, Tardos 2011]

To get incident edge on component S⊂V use:

Basic Idea: Cut Sampling

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

support (

X

i2S

ai) = E (S ,V \ S)

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

First: Encode neighborhoods of i as vector ai.

Lemma: For any subset of nodes S⊂V,

Second: Send Maj where M is random projection
to ℝpolylog N such that for any a, we can infer non-
zero entry of a from Ma.
 [Jowhari, Saglam, Tardos 2011]

To get incident edge on component S⊂V use:

Basic Idea: Cut Sampling

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

support (

X

i2S

ai) = E (S ,V \ S)

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

X

j2S

Maj = M(
X

j2S

aj)

First: Encode neighborhoods of i as vector ai.

Lemma: For any subset of nodes S⊂V,

Second: Send Maj where M is random projection
to ℝpolylog N such that for any a, we can infer non-
zero entry of a from Ma.
 [Jowhari, Saglam, Tardos 2011]

To get incident edge on component S⊂V use:

Basic Idea: Cut Sampling

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

support (

X

i2S

ai) = E (S ,V \ S)

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

�! e 2 support(

X

j2S

aj) = E (S ,V \ S)
X

j2S

Maj = M(
X

j2S

aj)

First: Encode neighborhoods of i as vector ai.

Lemma: For any subset of nodes S⊂V,

Second: Send Maj where M is random projection
to ℝpolylog N such that for any a, we can infer non-
zero entry of a from Ma.
 [Jowhari, Saglam, Tardos 2011]

To get incident edge on component S⊂V use:

Basic Idea: Cut Sampling

1

2

3

5

4

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

a1 =
�
1 1 0 0 0 0 0 0 0 0

�

a2 =
�
�1 0 0 0 1 0 0 0 0 0

�

support (

X

i2S

ai) = E (S ,V \ S)

a1 + a2 =
�
0 1 0 0 1 0 0 0 0 0

�

�! e 2 support(

X

j2S

aj) = E (S ,V \ S)
X

j2S

Maj = M(
X

j2S

aj) �! e 2 support(

X

j2S

aj) = E (S ,V \ S)

1.	
Algorithms

2. 	
Extensions

3. 	
Directions

1.	
Algorithms

2. 	
Extensions

3. 	
Directions

Open Problems

Open Problems

? Many specific open questions:

• Approximate matching in Õ(n)-space with deletions?

• Can we construct spanners of sliding window graphs?

• Improve approx. factors for matchings and triangles...

Open Problems

? Many specific open questions:

• Approximate matching in Õ(n)-space with deletions?

• Can we construct spanners of sliding window graphs?

• Improve approx. factors for matchings and triangles...

? Open Problems Wiki: Large set of open problems in data
streams and property testing can be found at:

http://sublinear.info

http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

Future Directions

Future Directions

? Directed Graphs: Almost all research to date has considered
undirected graphs but many natural graphs are directed. May
need multiple passes but O(log n) passes might be sufficient.

Future Directions

? Directed Graphs: Almost all research to date has considered
undirected graphs but many natural graphs are directed. May
need multiple passes but O(log n) passes might be sufficient.

? Stream Ordering: Consider problems under different orderings,
e.g., grouped-by-endpoint, increasing weight, random order.

Future Directions

? Directed Graphs: Almost all research to date has considered
undirected graphs but many natural graphs are directed. May
need multiple passes but O(log n) passes might be sufficient.

? Stream Ordering: Consider problems under different orderings,
e.g., grouped-by-endpoint, increasing weight, random order.

? More or Less Space: Most work has focus on Õ(n)-space
algorithms. Can we reduce space-complexity for specific
families of graphs? What’s possible with slightly more space?

Future Directions

? Directed Graphs: Almost all research to date has considered
undirected graphs but many natural graphs are directed. May
need multiple passes but O(log n) passes might be sufficient.

? Stream Ordering: Consider problems under different orderings,
e.g., grouped-by-endpoint, increasing weight, random order.

? More or Less Space: Most work has focus on Õ(n)-space
algorithms. Can we reduce space-complexity for specific
families of graphs? What’s possible with slightly more space?

? Explore deeper connections with distributed algorithms,
communication complexity, dynamic graphs data structures...

Summary of the Survey

Thanks!

Summary of the Survey
• Algorithms: Spanners and sparsifiers capture different

properties of the graph. Efficient constructions in streaming
model. Other positive results for matchings, triangles, etc.

• Extensions: Many variants of the basic model including sliding
windows, multi-pass, edge deletions, annotations...

• Directions: Improve existing results. Future directions include
directed graphs, stream ordering, specific graph families etc.

Thanks!

http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

Lower Bound for Connectivity

Lower Bound for Connectivity

Alice and Bob have x,y∈{0,1}n. For Bob to check if
xi=yi=1 for some i needs Ω(n) communication.

Lower Bound for Connectivity

Alice and Bob have x,y∈{0,1}n. For Bob to check if
xi=yi=1 for some i needs Ω(n) communication.
Let A be an s space algorithm for connectivity.

Lower Bound for Connectivity

Alice and Bob have x,y∈{0,1}n. For Bob to check if
xi=yi=1 for some i needs Ω(n) communication.
Let A be an s space algorithm for connectivity.
Consider 2-layer graph (U,V) with |U|=|V|=n

...

...

U

V

Lower Bound for Connectivity

Alice and Bob have x,y∈{0,1}n. For Bob to check if
xi=yi=1 for some i needs Ω(n) communication.
Let A be an s space algorithm for connectivity.
Consider 2-layer graph (U,V) with |U|=|V|=n
Alice runs A on E1={uivi: 1≤i≤n} and E2={uiui+1:xi=0}

...

...

U

V

Lower Bound for Connectivity

Alice and Bob have x,y∈{0,1}n. For Bob to check if
xi=yi=1 for some i needs Ω(n) communication.
Let A be an s space algorithm for connectivity.
Consider 2-layer graph (U,V) with |U|=|V|=n
Alice runs A on E1={uivi: 1≤i≤n} and E2={uiui+1:xi=0}

...

...

U

V

Lower Bound for Connectivity

Alice and Bob have x,y∈{0,1}n. For Bob to check if
xi=yi=1 for some i needs Ω(n) communication.
Let A be an s space algorithm for connectivity.
Consider 2-layer graph (U,V) with |U|=|V|=n
Alice runs A on E1={uivi: 1≤i≤n} and E2={uiui+1:xi=0}
Send memory to Bob who runs A on E3={vivi+1:yi=0}

...

...

U

V

Lower Bound for Connectivity

Alice and Bob have x,y∈{0,1}n. For Bob to check if
xi=yi=1 for some i needs Ω(n) communication.
Let A be an s space algorithm for connectivity.
Consider 2-layer graph (U,V) with |U|=|V|=n
Alice runs A on E1={uivi: 1≤i≤n} and E2={uiui+1:xi=0}
Send memory to Bob who runs A on E3={vivi+1:yi=0}
Output of A resolves matrix question so s=Ω(n).

...

...

U

V

Lower Bound for Connectivity

Alice and Bob have x,y∈{0,1}n. For Bob to check if
xi=yi=1 for some i needs Ω(n) communication.
Let A be an s space algorithm for connectivity.
Consider 2-layer graph (U,V) with |U|=|V|=n
Alice runs A on E1={uivi: 1≤i≤n} and E2={uiui+1:xi=0}
Send memory to Bob who runs A on E3={vivi+1:yi=0}
Output of A resolves matrix question so s=Ω(n).

...

...

U

V

